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Abstract
The present study highlights self-consistently helpful improvements dedicated to overcoming
the difficulty resulting from the fitting procedure of integrated Raman intensities recorded
according to the rotation crystal method described earlier. To this end, the anisotropy factors of
Raman polarizabilities and the corresponding relative phases are determined within the
framework of the exact mathematical derivation of the phase factors. These are the relevant
parameters of the Raman efficiency relations which are numerically difficult to obtain from the
fitting of the integrated areas. The present theoretical approach is then applied to the modes of
the A1 and Ey symmetry species of the lithium niobate (LN) crystal point group. All the
expressions of the Raman absolute intensities of the A1 and Ey irreducible representations
initially imply three parameters to be determined from the fitting computations. However, from
the derived analytical expressions of the phase differences, the number of parameters involved
in the fitting procedure is reduced from 3 to 2, thus improving the statistics of the numerical
treatment.

1. Introduction

In the connection between the electro-optic coefficients and
Raman scattering, the highest source of error is related to the
absolute or relative determination of Raman polarizabilities.
Direct measurements are less accurate because of the
variability of the steps in the spectral acquisition chain,
for example the apparatus function of the spectrometer, the
detector spectral sensitivity, as well as the noise equivalent
power. Relative measurements are preferred even if they
need a standard. For most of the measurements one always
needs to fit the response functions to evaluate the Raman
polarizabilities. Mooradian [1] and McWhorter have used
the response functions of plasmons and LO phonons in
GaAs to determine Raman polarizabilities as well as the
corresponding second harmonic generation coefficients. Loa

et al [2] measured indirectly the tensor elements of the Raman
scattering in thin sample films of GaN by measurement of
the Raman efficiencies at different distances from the laser
focus. Nippus [3] has used the simplified Raman profile
to determine peak areas and relative Raman tensor that he
then converted to the relative Raman tensor polarizabilities.
Strach et al [4] have used both rotations of the polarizers
and the analysers to obtain the Raman intensities. Moreover,
they used arbitrary data to adjust these Raman intensities.
More recently, Djiedeu et al [5], by rotating the crystal in
steps of 10◦, have demonstrated a general method for the
determination of the Raman efficiencies in the backscattering
configuration for parallel and perpendicular polarizers. The
method of crystal rotation allows us to express the Raman
efficiencies of C3v crystals as a function of crystal rotation
angle. In previous studies [4, 5] such expressions of the Raman
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Figure 1. Raman spectra of a pure LiNbO3.

efficiencies were directly used to fit experimental curves.
Therefore it was very difficult to determine some parameters
like phase differences, anisotropy factors and extrema positions
of the Raman efficiency. In this study we propose a new
approach allowing unambiguously the determination of these
parameters. This paper is organized into five sections.
Section 2 is an indication of the measurement procedure
of the Raman spectra and the presentation of experimental
results prior to their analysis. In section 3 we present the
analytical treatment of the Raman spectra based on a rigorous
mathematical approach. We have calculated some theoretical
parameters of C3v crystals for both A1 and Ey modes, for
example the phase difference, for which we have demonstrated
its uniqueness. Section 4 presents the application of this
study to the lithium niobate crystal and the experimental
results. Finally, we compare our work with previous studies,
discuss the results and conclude about the accuracy and the
generalization of our method.

2. Procedure of the Raman spectra measurement

The experimental set-up and the studied crystal have been
described in [5]. The stoichiometric lithium niobate crystal
belongs to the C3v point group whose associated Raman tensors
with active modes are [6]

A1(z) =
( a 0 0

0 a 0
0 0 b

)
, E(x) =

( 0 c d
c 0 0
d 0 0

)
,

E(y) =
( c 0 0

0 −c d
0 d 0

)
.

(1)

The letters in parentheses indicate the direction of the
polarization associated with the modes with respect to the
crystallographic axis. In order to simplify the notation, we
set E(x) = Ex and E(y) = Ey. The complex numbers
a, b, c and d are the Raman tensor components which can be
selected by the polarization filter (i j ) (i, j being the dielectric
axes of the crystal which are assumed to be identical to the
laboratory axes; the polarization filter is equivalent to the basis

functions of the C3v point group). The Raman spectra were
recorded using the backscattering scheme x(yy)x (θ = 0◦) to
x(zz)x (θ = 90◦) in steps of 10◦. θ is the crystal rotation angle
around the x dielectric axis. According to (1), both the A1

(TO) and Ey(TO) Raman modes will be activated in the same
spectrum (figure 1). At θ = 40◦, the structures belonging to the
Ey symmetry species present an intensity enhancement while
these lines totally disappear at θ = 90◦ corresponding to the
polarization filter (zz). As a consequence, rotating the crystal
preserves the selection rules worked out from group theoretical
considerations.

3. Analytical treatment of the Raman spectra

3.1. Intensity of a Raman line

According to the fluctuation–dissipation theorem [7], the
Raman intensity of a symmetric Raman line and for a
transverse optical mode is described by a Lorentz profile as

d2 I

l dω d�
∝ A0.

�ωω2
0

(ω2 − ω2
0)

2 + �2ω2
(n(ω) + 1) (2)

where I is the intensity of the Raman line,
A0: amplitude of the Lorentz profile, ω0: frequency of the

TO phonon,
�: damping parameter of the phonon mode, l: scattering

length in the crystal,
n(ω): thermal population factor, �: solid angle.
We have used equation (2) for the fitting of the parameters

(A0, ω0, �) of all the peaks. These parameters will be used to
evaluate the peak areas of the Raman line.

3.2. Area fitting

Using the approximation ω ∼ ω0, equation (2) can be rewritten
as

d2 I

l dω d�
∝ S(ω) = Smax

(�/2)2

(ω − ω0)2 + (�/2)2
(3)

where
Smax = A0

ω0

�
(n(ω0) + 1) (4)
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Figure 2. Peak area of a Raman line.

S(ω): amplitude of the Raman line for a given ω, Smax:
maximum amplitude of the Raman line [3].

It can be shown easily using equation (3) that � is the
full width at half-maximum. This is due to the approximation
ω ∼ ω0. Nippus [3] has used a simplified Lorentz profile
to evaluate the parameters (Smax, ω0, �) and the peak areas.
Therefore, with the aim of comparing our results with those of
Nippus, we have used equation (3) to evaluate the peak areas.
We obtained

dI

d�
∝ S = 1

�

∫ ω0+�

ω0−�

S(ω) dω = Smax arctan(2) (5)

where S is the peak area of the Raman profile. S and Smax are
dimensionless quantities. Equation (5) shows that the Raman
line intensity can be considered proportional to the integrated
area. The integrated areas proportional to the Raman intensities
of the transverse modes of A1 and Ey modes are evaluated
over an interval 2� as shown in figure 2. This is to avoid errors
due to the base line asymmetry and to take into account the
approximation ω ∼ ω0. The use of equation (5) then improves
the calculation of peak areas rather than the approximation of
the isosceles triangle used previously [5].

3.3. Raman intensities

The absolute Raman intensity can be calculated [4] using the
relation

I = |e∗
s Pei|2 (6)

where P is the Raman tensor of the uniaxial crystals given in
equations (1),

ei: polar unit vector of the incident polarization,
e∗

s : polar and transposed matrix of the scattered
polarization unit vector.

For the backscattering geometrical configuration x(· · ·)x ,
these unit vectors are contained in the (yz) plane. We have
derived the Raman intensity expressions for C3v crystals using
equations (1) and (6) for A1 and Ey modes. It then follows that

I A1(θ)
yz = (1/2)(|a|2 + |b|2 − 2|a||b| cosϕba) sin2(2θ) (7)

I A1(θ)
yy = |a|2 cos4 θ + |b|2 sin4 θ

+ (1/2)|a||b| sin2(2θ) cos(ϕba) (8)

I A1(θ)
zz = |a|2 sin4 θ + |b|2 cos4 θ

+ (1/2)|a||b| sin2(2θ) cos ϕba (9)

I E y(θ)
yz = (1/4)|c|2 sin2(2θ) + |d|2 cos2(2θ)

− (1/2)|c||d| sin(4θ) cos(ϕdc) (10)

I E y(θ)
yy = |c|2 cos4 θ + |d|2 sin2(2θ)

+ 2|c||d| cos2(θ) sin(2θ) cos(ϕdc) (11)

I E y(θ)
zz = |c|2 sin4(θ) + |d|2 sin2(2θ)

− 2|c||d| sin2(θ) sin(2θ) cos(ϕdc) (12)

|a|, |b| are the absolute tensor elements of the Raman
scattering of the A1 symmetric modes. |c|, |d| are the
absolute tensor elements of the Raman scattering of the
Ey symmetric modes, while ϕba and ϕcd are the phase
differences, respectively, for the A1 and Ey modes, and θ is
the angle of the crystal rotation. We have to notice that a
θ rotation of the crystal corresponds to a −θ rotation of the
polarization unit vectors. Diagonal elements are obtained for
parallel polarizations (ei ‖ es) and nondiagonal elements are
obtained for crossed polarizations (ei ⊥ es). For example,
equation (7) has been obtained using ei(0, cos θ,− sin θ)

and e∗
s (0, sin θ, cos θ). Equations (7) and (9) have been

derived previously by Strach [4] with another approach. In
equations (7)–(12), the subscripts i j of the Raman intensities
are the initial state of the polarization filter while the
superscripts refer to the polar irreducible representation of
the C3v crystal point group. Since the Raman spectra are
recorded by stepping the rotation of the crystal for each ten
degrees, relation (7)–(12) can be used for the experimental data
determined in the framework of the response function.

Each of these Raman intensities contains three unknown
parameters, which are two Raman tensor elements or Raman
polarizabilities and their phase difference. A fit with three
parameters is a source of large errors. Knowing that
the phase differences are functions of the absolute Raman
polarizabilities, it is possible to reduce these three parameters
to two by differentiating the Raman intensities and separating
the variables. Details of the change of variables and use of the
anisotropy parameters are given in the appendix.

3.4. Anisotropy parameters

We have used these parameters to rewrite the Raman
efficiencies defined in equations (7)–(12) in a useful form. We
will see later that the anisotropy parameters are very important
for the direct determination of the anisotropy factors and the
phase differences.

For the A1 mode, we have defined the anisotropy
parameter β by

cos β = |a|√|a|2 + |b|2 , sin β = |b|√|a|2 + |b|2 . (13)

For the Ey mode, we have defined the anisotropy parameter α

by

cos α = |c|√|c|2 + 4|d|2 , sin α = 2|d|√|c|2 + 4|d|2 . (14)

The anisotropy parameters are derived experimentally during
the fitting procedure.

3
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Using these expressions and differentiating the Raman
efficiencies, we have obtained the derived equations as
functions of the phase difference and the extrema positions.
We have separated these variables and obtained, on the one
hand, the phase differences of Raman polarizabilities and, on
the other hand, the extrema positions of the Raman efficiencies.

3.5. Theoretical results for the A1 mode

3.5.1. Anisotropy factor. In the literature [4] the anisotropy
factors are sometime defined as the ratio between Raman
polarizabilities. This is the definition we have used in this
work. Using equation (13), we obtain the anisotropy factor
given by

|b|
|a| = tan β. (15)

3.5.2. Phase differences. The phase differences are given by

ϕba = ±2β or ϕba = ±(π ± 2β). (16)

The sign + or − takes into account the fact that b is damped
with respect to a or conversely.

We can choose the phase difference to be positive.

3.5.3. Extrema positions of the Raman efficiencies. During
the fitting procedure, we should be able to check the number of
extrema expected. The extrema are

cos(2θ0) = cos(2β)

−1 + sin(2β) cos(2β)
or

cos(2θ0) = cos(2β)

−1 − sin(2β) cos(2β)
(17)

θ = 2kπ

2
, θ = π

2
+ 2kπ

2
, k ∈ {0, 1}. (18)

3.6. Theoretical results for the Ey mode

By analogy with the A1 mode, we have obtained the following
results for the Ey mode.

3.6.1. Anisotropy factors. The anisotropy factor is defined by
the equation below:

|d|
|c| = 1

2
tan α. (19)

3.6.2. Phase differences. The phase differences are given by

ϕdc = ±2α or ϕdc = ±(π ± 2α). (20)

3.6.3. Extrema positions. The extrema positions are given by

θ0 = kπ

4
+ arctan(sin(2α)) or

θ0 = kπ

4
+ arctan(− sin(2α)), k ∈ {0, 1, 2, 3}.

(21)

3.7. Fitting of the Raman intensities

The above parameters allow us to reduce the number of fitting
parameters from 3 to 2 and to express the Raman efficiency as
functions of only two parameters. Then, using the relation of
proportionality (5) between the integrated area and the Raman
intensity, we have been able to express the integrated areas as
functions of the anisotropy parameters and the crystal rotation
angle:

S A1(θ)
yz = (a0)

2(1 + (tan β)2)(1 ∓ sin(4β)) sin2(2θ) (22)

S A1(θ)
yy = (a0)

2(1 + (tan β)2)[cos2 β cos4 θ

+ sin2 β sin4 θ ± (1/8) sin(4β) sin2(2θ)] (23)

S A1(θ)
zz = (a0)

2(1 + (tan β)2)[cos2 β sin4 θ

+ sin2 β cos4 θ ± (1/8) sin(4β) sin2(2θ)] (24)

SE y(θ)
yz = (1/8)(c0)

2(1 + tan2 α)[1 − cos(2α)

× cos(4θ) ± (1/2) sin(4α) sin(4θ)] (25)

SE y(θ)
yy = (1/2)(c0)

2(1 + tan2 α)[1 + cos(2α)

× cos(2θ) ∓ (1/2) sin(4α) sin(2θ)] cos2(θ) (26)

SE y(θ)
zz = (1/2)(c0)

2(1 + tan2 α)[1 − cos(2α)

× cos(2θ) ± (1/2) sin(4α) sin(2θ)] sin2(θ) (27)

where
a0 = δ0|a| and c0 = η0|c| (28)

a0 and c0 are defined as lengths and are derived from fits to
the experimental data. δ0 and η0 are the square roots of the
coefficients of proportionality between the integrated area and
the Raman intensity for A1 and Ey modes, respectively. The
sign + or − is directly related to the phase difference used.
These functions have a periodicity of π or π/2.

We can see that the peak areas are expressed as functions
of only two parameters. This is a major advantage because
of the accuracy of the results provided and the time saved
during the fitting procedures. The optimal parameters are those
allowing the best fitting of the experimental curves.

3.8. Uniqueness of the phase difference

The Raman intensities (11) and (12) are nonlinear and
symmetric functions. We have studied equation (11) in order
to check the uniqueness of the phase difference. We assume
first of all that we do not know the expression of the phase
difference. After studying the Raman efficiency in the case of
parallel polarizers for the Ey mode, we have shown that there
exists no other solution.

3.8.1. Derivative equations. The derivative of the Raman
efficiency (11) leads to two equations:

cos θ = 0 (29)

tan3 θ + 3
cos ϕdc

tan α
tan2 θ +

(
2

tan2 α
− 1

)
tan θ − cos ϕdc

tan α
= 0.

(30)
The first has a trivial solution which is π/2 and the second is a
polynomial equation.

4
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Figure 3. � and p signs as a function of the anisotropy parameter.

3.8.2. Resolution of the third-order polynomial equation.
With the change of variable,

tan θ = x − cos ϕdc

tan α
(31)

the polynomial equation (30) becomes

x3 − px − q = 0 (32)

p = (1 − √
3 cos α sin ϕdc)(1 + √

3 cos α sin ϕdc)
1

sin2 α
(33)

q = 2 sin2 ϕdc cos ϕdc
1

tan3 α
. (34)

The sign of � defined below indicates the number of real roots
of equation (32):

� =
(

− p

3

)3

+
(

q

2

)2

. (35)

The substitution of p and q by their respective expres-
sions (33), (34) leads to

� = −
[

1
4 cos2 α sin2(2α) sin4 ϕdc

− 1

3
cos2 α sin2 ϕdc + 1

27

]
1

sin6 α
. (36)

We have resolved equation (32) and we do not find another
expression for the phase difference. This is a proof of
its uniqueness. Therefore the expressions of the phase
differences (20) we have obtained for perpendicular polarizers
are unique solutions.

4. Applications and experimental results

For applications, we have to replace in all the above relations
the phase difference by its positive value less than π , which
is ϕdc = π − 2α obtained for a lithium niobate crystal. One
of the extrema positions is π/2. The others depend on p and
� signs. These signs depend on the value of the anisotropy
parameter α. Their knowledge can give us a general view

Figure 4. Peak area of the A1 mode for parallel polarizers at
632 cm−1.

of the existence of all types of solutions. The number of
real roots corresponds to the number of extrema positions that
we are supposed to find during the experimental simulations.
To display this maximum, experimental simulations should be
done in intervals corresponding to the period of the theoretical
function. Figure 3 displays p and � signs demonstrating the
different roots of the polynomial equation as a function of the
anisotropy parameter α.

Table 1 presents some results of the Raman line fitting
for three angle values of the crystal rotation. The error is
calculated using the combination of errors from ω0, � and A0.
So we have used equations (4) and (5) to find errors on S.

Table 2 is a comparison of the optical phonon modes of
the present work with those of Nippus [3] and Barker and
Loudon [8]. In table 1, we can see that the full width at
half-maximum changes with the crystal rotation angle. In
these last two works, the crystal rotation effect on the Raman
line parameters has not been studied. So we compared these
previous results with ours, obtained at θ = 0◦. For some
phonon frequencies, our results are close to those of Nippus [3]
and, for some others, they are close to those of Barker and
Loudon [8].

Using the complete results of area fitting, we have plotted
the Raman efficiencies or peak areas for two modes. These
areas have been normalized by that of the A1 mode for 0◦
measured at 253 cm−1. Figure 4 displays the evolution of the
peak area (equation (23)) with the crystal rotation angle for
the A1 mode at 632 cm−1. Figure 5 displays the evolution of
the peak area (equation (26)) with the crystal rotation angle
for the Ey mode at 369 cm−1. Table 3 presents the phase
differences, the anisotropy factors (A.Fac) and a comparison
with [3] results.

5. Discussions and conclusion

We can see from these three tables that the results of
Nippus [3] and the present work are very similar for A1

and Ey modes. The slight difference observed can be
due to the fact that Nippus has considered that the relative

5
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Table 1. Peak areas.

Angle ω0 (cm−1) A0 �0 (cm−1) Smax Sa N .S b E .S c (%)

0◦ 154 5.7 13.5 124.2 137.5 0.56 10.3
253 10.6 17 223.7 247.7 1.00 7.6
276 14.6 19 290.1 321.2 1.30 6.6
369 0.9 13.5 29.7 32.8 0.13 23.3
433 2.3 12.6 91.9 101.7 0.41 14.2
580 8.6 31.5 167.8 185.8 0.75 5.1
633 63 23 1825.1 2020.3 8.16 4.8

50◦ 154 17.6 13.3 389.5 431.2 1.74 8.7
253 69.3 24.5 1017.2 1126.1 4.55 4.7
276 25.4 12.6 757.5 838.5 3.39 8.9
369 3.8 20.3 82.2 91 0.37 9
433 2 9.8 98.5 109 0.44 17.7
579 11.4 21 335.4 371.3 1.50 6.3
633 47.3 23.1 1358.3 1503.6 6.07 4.9

90◦ 253 259 18.2 5125.6 5674 22.91 5.9
276 107.1 12.6 3197.9 3540.1 14.29 8.4
633 47.3 17.5 6456.2 7147 28.85 6.1

a area; b normalized area; c error in area.

Table 2. Optical phonon modes in LiNbO3 at 300 K.

E symmetry mode A1 symmetry mode

ω0 (cm−1) � (cm−1) a � (cm−1) b � (cm−1) c ω0 (cm−1) � (cm−1) a � (cm−1) b � (cm−1) c

154 13.5 12 17 253 17 26 28
369 13.5 22 20 276 19 12 20
433 12.6 12 17 633 23 24 28
580 31.5 26 29

a present results; b reference [3] results; c reference [8] results.

Table 3. Phase differences and anisotropy factors.

Mode ω0 (cm−1) β, α (deg) a ϕba, ϕdc (deg) b A.Fac c (A.Fac)−1 (A.Fac)−1 [3]

A1 253 75.4 150.8 3.84 0.26 0.29
276 71.2 142.4 2.94 0.34 0.44
633 59.6 119.2 1.70 0.59 0.64

E2 154 78.4 23.2 2.44 0.41 0.37
369 71.5 37 1.49 0.67 0.46
432 58.2 63.6 0.81 1.24 0.73
580 65.4 49.2 1.09 0.92 0.55

a Anisotropy parameter for A1 and E y modes, respectively.
b Phase difference for A1 and E y modes, respectively.
c Anisotropy factor.

integrated areas are exactly equal to the square of the relative
Raman polarizabilities. This is not quite exact because the
proportionality coefficient depends on the phonon frequency.
Strach [4] has determined some expressions of the Raman
efficiencies as a function of the polarizer directions, but he did
not use an adapted mathematical approach to determine with
better accuracy the relative Raman tensor elements.

In conclusion, the theoretical study of the Raman
efficiencies shows that the anisotropy parameters α and β

are useful for the direct determination of anisotropy factors.
We have established direct relations between peak areas and
Raman efficiencies. These expressions are more convenient
for fitting. Moreover, knowledge of the Raman efficiency
theoretical behaviour is important for the prediction of the
experimental curve behaviour, even for the nonlinear case.

Our method is adapted for this study because it also allows
us to determine numerous crystal characteristics, namely
the anisotropy parameters, anisotropy factors and phase
differences. This method is systematic and leads to accurate
results. It is a general method applicable to other C3v crystals.

It would be more interesting to compare the phase
differences and the anisotropy factors given in table 3 from
the present work with those calculated from the quantum
mechanical calculations based on atomic sphere approximation
(ASA) linear muffin tin orbital (LMTO) band structures [9].
Such a comparison has been carried out by Strach [4] in the
study of SmBa2Cu3O7−δ superconductors for different laser
energies. As a consequence, the present work has to be
extended to other laser lines in order to provide experimental
datasets for further theoretical investigations.

6
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Figure 5. Peak area of the E y mode for parallel polarizers at
369 cm−1.
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Appendix A. Study of the Raman intensity I
A1(θ)
yy

A.1. Linearization and period

Let

cos β = |a|√|a|2 + |b|2 , sin β = |b|√|a|2 + |b|2 . (A.1)

The linearization of equation (8) leads to the following
periodical equation with period T = π :

I A1(θ)
yy = |a|2(1 + (tan β)2)[ 3

8 + 1
8 sin(2β) cos ϕba

+ 1
2 cos(2β) cos(2θ)

− (sin(2β) cos ϕba − 1) cos(4θ)]. (A.2)

A.2. Phase difference and extrema positions

The first derivative of (A.2) with respect to the angle θ is equal
to zero under the conditions

− cos 2β + (sin 2β cos ϕba − 1) cos 2θ = 0, sin 2θ = 0.

(A.3)
These conditions are respectively equivalent to

cos ϕba = cos(2θ0) + cos(2β)

cos(2θ0) sin(2β)
(A.4)

θ0 being the position of an extremum:

θ = 2kπ

2
, θ = π

2
+ 2kπ

2
k ∈ {0, 1}. (A.5)

Equation (A.4) contains two unknown parameters (ϕba, θ0)

depending on the parameter β .
So, the phase difference is unknown explicitly, the same

as the extrema positions.
In the following, we have used a mathematical approach

to separate these parameters.

A.2.1. Phase difference. Seeing that equation (A.4) contains
cos(2β) and sin(2β), we rewrite it as(

cos(2θ0) + cos(2β)

cos(2θ0) cos(2β)

)
cos(2β) − sin(2β) cos ϕba = 0.

(A.6)
Let

sin ϕba = ±cos(2θ0) + cos(2β)

cos(2θ0) cos(2β)
. (A.7)

Equation (A.6) becomes

sin(ϕba ± 2β) = 0 (A.8)

or
tan(ϕba) = tan(±2β) (A.9)

(A.8) and (A.9) have naturally the same solutions given by

ϕba = ±2β (A.10)

or
ϕba = ±(π ± 2β). (A.11)

The sign + or − takes into account the fact that b is damped
with respect to a or conversely.

It is found from the experimental data that the optimal
solution of (A.6) is then expressed by (A.11).

A.2.2. Extrema positions. Consider the general equation

sin2 ϕ + cos2 ϕ = 1 (A.12)

we substitute in this equation the expressions for sin ϕba and
cos ϕba. We obtain a second degree equation whose variable is
cos(2θ0):

(1 − sin2(2β) cos2(2β)) cos2(2θ0) + 2 cos(2β) cos(2θ0)

+ cos2(2β) = 0. (A.13)

Solving this equation, the two solutions are

cos(2θ0) = cos(2β)

−1 + sin(2β) cos(2β)
(A.14)

or

cos(2θ0) = cos(2β)

−1 − sin(2β) cos(2β)
. (A.15)

These solutions can also be obtained by using equation (A.4).
Therefore, solution (A.14) is the one we can obtain with
the phase difference (A.10) and solution (A.15) can be
obtained with the phase difference (A.11). So, the optimal
solution is (A.14) according to experimental measurements.
Meanwhile, the sign of the phase difference is not determined.
These two values of the phase differences lead to the same
Raman scattering intensity because the cosine is an even
function. The space range of the parameter can be known by
using the restricting condition:

−1 � cos(2θ0) � 1 (A.16)

β ∈]28, 6◦; 90◦[. (A.17)
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A.3. Raman efficiency expression

Substituting the phase difference in the Raman expression (8)
by its expression given by (A.10) and using (A.1), we can then
rewrite the expression of the corresponding Raman intensity as

I A1(θ)
yy = |a|2(1 + (tan β)2)[cos2 β cos4 θ + sin2 β sin4 θ

+ 1
8 sin(4β) sin2(2θ)] (A.18)

where we can see that the Raman intensity is now expressed as
a function of only two parameters |a| and β .

Appendix B. Study of the Raman intensity I
Ey(θ)
yz

B.1. Linearization and period

Let

cos α = |c|√|c|2 + 4|d|2 , sin α = 2|d|√|c|2 + 4|d|2 .

(B.1)
The linearization of (10) leads to the following periodical
function with a period T = π/2:

I E y(θ)
yz = 1

8 |c|2(1 + (tan α)2)[1 − cos(2α) cos(4θ)

− sin(2α) sin(4θ) cos(ϕdc)]. (B.2)

B.2. Phase difference and extrema positions

The first derivative of (B.2) with respect to the angle θ is equal
to zero for the condition

cos(2α) sin(4θ0) − sin(2α) cos ϕdc cos(4θ0) = 0. (B.3)

Equation (B.3) has two unknown parameters which are
the phase difference and the extrema position, respectively
(ϕdc, θ0) depending on the parameter α. So we have to separate
these unknown parameters and express each of them as a
function of α. With the aim of separating the variables, we
rewrite (B.3) as follows:

cos ϕdc = tan(4θ0)

tan(2α)
. (B.4)

B.2.1. Phase difference. Equation (B.3) can also be rewritten
as

tan(4θ0) cos(2α) − sin(2α) cos ϕdc = 0. (B.5)

Let
sin ϕdc = ± tan(4θ0). (B.6)

Therefore, equation (B.5) becomes

sin(ϕdc ± 2α) = 0 (B.7)

or
tan(ϕdc) = tan(±2α). (B.8)

Equations (B.7) and (B.8) have the same solutions which are
given by

ϕdc = ±2α (B.9)

or
ϕdc = ±(π ± 2α). (B.10)

The sign + or − takes into account the fact that d is damped
with respect to c or conversely.

According to the experimental results, the optimal solution
is given by (B.10).

B.2.2. Extrema positions. Substituting in the general
equation (A.12) the expressions for cosine and sine by their
above values, we obtain a second degree equation. Its
resolution yields

tan(4θ0) = sin(2α) (B.11)

or

tan(4θ0) = − sin(2α). (B.12)

Solving equations (B.11) and (B.12), the peak positions
are given by

θ0 = kπ

4
+ arctan(sin(2α)) (B.13)

or

θ0 = kπ

4
+ arctan(− sin(2α)) k ∈ {0, 1, 2, 3}. (B.14)

Using the derived equation (B.5), solution (B.13) is the one we
can obtain with the phase difference (B.9) and (B.14) can be
obtained with the phase difference (B.10).

According to the experimental simulations, the optimal
result is given by (B.14).

B.3. Raman efficiency

Now that the phase difference is expressed as a function of the
parameter α we can rewrite the Raman efficiency in a useful
form as follows:

I E y(θ)
yz = 1

8 |c|2(1 + tan2 α)[1 − cos(2α) cos(4θ)

+ 1
2 sin(4α) sin(4θ)]. (B.15)

Comparing equations (10) and (B.15), we can see that the
number of parameters has been reduced from 3 to 2. This is
an important result that simplifies the fitting of the spectra.
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